organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2E)-3-(4-Chlorophenyl)-1-[4-(methylsulfanyl)phenyl]prop-2-en-1-one

A. Thiruvalluvar,^a* M. Subramanyam,^a R. J. Butcher,^b A. V. Adhikari^c and T. Karabasanagouda^c

^aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamil Nadu, India, ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and CDepartment of Chemistry, National Institute of Technology Karnataka, Surathkal, Srinivasnagar 575 025, India

Correspondence e-mail: athiru@vsnl.net

Received 29 October 2007; accepted 7 November 2007

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.002 Å; R factor = 0.035; wR factor = 0.077; data-to-parameter ratio = 26.0.

In the title molecule, C₁₆H₁₃ClOS, the dihedral angle between the two benzene rings is $51.0(1)^{\circ}$.

Related literature

For the uses of chalcones, see: Dhar (1981). For related crystal structures, see: Rabinovich & Shakked (1974); Ravishankar et al. (2005); Schmalle et al. (1990).

Experimental

Crystal data

$V = 1352.66 (14) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.42 \text{ mm}^{-1}$
T = 200 (2) K
$0.46 \times 0.37 \times 0.29 \text{ mm}$

Data collection

Oxford Diffraction Gemini diffractometer	$T_{\rm min} = 0.829, T_{\rm max} = 1.000$ (expected range = 0.733-0.884)
Absorption correction: multi-scan	12209 measured reflections
(CrysAlis RED; Oxford	4494 independent reflections
Diffraction, 2007)	2386 reflections with $I > 2\sigma(I)$
	$R_{\rm int} = 0.038$

Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.035$	173 parameters
$wR(F^2) = 0.077$	H-atom parameters constrained
S = 0.86	$\Delta \rho_{\rm max} = 0.28 \ {\rm e} \ {\rm \AA}^{-3}$
4494 reflections	$\Delta \rho_{\min} = -0.23 \text{ e} \text{ Å}^{-3}$

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

RJB acknowledges the NSF-MRI program for funding to purchase the X-ray CCD diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2045).

References

- Dhar, D. N. (1981). Chemistry of Chalcones and Related Compounds. New York: John Wiley and Sons
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.32. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Rabinovich, D. & Shakked, Z. (1974). Acta Cryst. B30, 2829-2834.
- Ravishankar, T., Chinnakali, K., Nanjundan, S., Selvam, P., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, 0405-0407.
- Schmalle, H. W., Adiwidjaja, G., Jarchow, O. H., Hausen, B. M. & Wollenweber, E. (1990). Acta Cryst. C46, 1712-1715.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2007). E63, o4716 [doi:10.1107/S1600536807056656]

(2E)-3-(4-Chlorophenyl)-1-[4-(methylsulfanyl)phenyl]prop-2-en-1-one

A. Thiruvalluvar, M. Subramanyam, R. J. Butcher, A. V. Adhikari and T. Karabasanagouda

Comment

Many patents have appeared in literature describing the usefulness of Chalcones and their derivatives. Their diverse applications such as artificial sweeteners, stabilizers against heat and visible light, color photography, scintillators, polymerization catalysts, fluorescent lightning agents and as brightening agents are well studied and documented (Dhar, 1981). The title material is used as an intermediate to prepare the corresponding pyrazole derivatives which have shown better antiinflamatory and analgesic activities. In the title molecule, $C_{16}H_{13}ClOS$, Fig.1, the dihedral angle between the two phenyl rings is 51.0 (1)°. The presence of a methylsulfanylphenyl group in the title molecule causes the 4-chlorophenyl group to twist away from each other. There are no classical hydrogen bonds found in the structure. In similar structures like 4,4'-Dimethylchalcone (Rabinovich & Shakked, 1974), 2',6'-Dihydroxy-4,4'-dimethoxychalcone (Schmalle *et al.*, 1990) and 1-(4-Chlorophenyl)-3-(4-hydroxyphenyl) prop-2-en-1-one(Ravishankar *et al.*, 2005), the dihedral angle between the two phenyl rings are 48.6°, 13.1 (4)° and 26.1 (1)° respectively.

Experimental

4-Chlororobenzaldehyde (2.5 g, 0.02 mol) in ethanol is mixed with 4-methylthio acetophenone (2.80 g, 0.02 mol) in 50 ml e thanol and the mixture was treated with 10 ml of 10% NaOH solution at 283 K and stirred for 8 h. The precipitate obtained was filtered, washed with ethanol and dried. Pale yellow rods of the title compound were grown from toluene by slow evaporation. The yield of the isolated product was 3.5 g (60%)

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–0.98Å and U_{iso} =1.2 to 1.5 times U_{eq} (C).

Figures

Fig. 1. The molecular structure of the title compound with the atomic numbering and 50% probability displacement ellipsoids. H atoms are shown shown as small spheres of arbitrary radius.

(2E)-3-(4-Chlorophenyl)-1-[4-(methylsulfanyl)phenyl]prop-2-en-1-one

Crystal data

C ₁₆ H ₁₃ ClOS	$F_{000} = 600$
$M_r = 288.78$	$D_{\rm x} = 1.418 \ {\rm Mg \ m}^{-3}$

Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 16.515 (1) Åb = 14.3026 (9) Åc = 5.7280 (3) Å $\beta = 91.284 (5)^{\circ}$ $V = 1352.66 (14) \text{ Å}^{3}$ Z = 4

Data collection

Oxford Diffraction Gemini diffractometer	4494 independent reflections
Radiation source: fine-focus sealed tube	2386 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.038$
T = 200(2) K	$\theta_{\text{max}} = 32.6^{\circ}$
φ and ω scans	$\theta_{\min} = 4.5^{\circ}$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)	$h = -24 \rightarrow 22$
$T_{\min} = 0.829, \ T_{\max} = 1.000$	$k = -21 \rightarrow 21$
12209 measured reflections	$l = -8 \rightarrow 7$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.035$	H-atom parameters constrained
$wR(F^2) = 0.077$	$w = 1/[\sigma^2(F_o^2) + (0.0355P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.86	$(\Delta/\sigma)_{\rm max} = <0.001$
4494 reflections	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
173 parameters	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Melting point: 444(1) K Mo *K*α radiation

Cell parameters from 4494 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 4.5 - 32.6^{\circ}$

 $\mu = 0.42 \text{ mm}^{-1}$ T = 200 (2) K

Prism, colourless

 $0.46 \times 0.37 \times 0.29 \text{ mm}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl4	0.97354 (2)	0.13561 (3)	-0.14833 (6)	0.0456(1)
S4	0.18062 (2)	0.10519 (3)	0.17298 (6)	0.0317(1)
01	0.54563 (6)	0.14122 (7)	0.71632 (15)	0.0382 (3)
C1	0.52954 (8)	0.13336 (9)	0.5078 (2)	0.0266 (4)
C2	0.59470 (8)	0.13108 (9)	0.3341 (2)	0.0276 (4)
C3	0.66980 (8)	0.10839 (9)	0.3972 (2)	0.0245 (4)
C4	0.12122 (9)	0.15828 (11)	0.3950 (3)	0.0417 (5)
C11	0.74201 (8)	0.11142 (8)	0.2543 (2)	0.0225 (4)
C12	0.81511 (8)	0.07634 (9)	0.3441 (2)	0.0264 (4)
C13	0.88615 (8)	0.08273 (9)	0.2223 (2)	0.0293 (4)
C14	0.88454 (8)	0.12614 (9)	0.0085 (2)	0.0269 (4)
C15	0.81354 (8)	0.16220 (9)	-0.0877 (2)	0.0263 (4)
C16	0.74260 (8)	0.15401 (8)	0.0342 (2)	0.0246 (4)
C21	0.44370 (8)	0.12768 (8)	0.4239 (2)	0.0232 (4)
C22	0.38269 (8)	0.15922 (8)	0.5672 (2)	0.0255 (4)
C23	0.30208 (8)	0.15462 (8)	0.4988 (2)	0.0264 (4)
C24	0.28069 (8)	0.11603 (8)	0.2817 (2)	0.0230 (4)
C25	0.34163 (8)	0.08362 (9)	0.1382 (2)	0.0264 (4)
C26	0.42171 (8)	0.09072 (9)	0.2052 (2)	0.0274 (4)
H2	0.58245	0.14608	0.17562	0.0331*
H3	0.67768	0.08772	0.55367	0.0294*
H4A	0.06385	0.15646	0.34764	0.0626*
H4B	0.12909	0.12401	0.54194	0.0626*
H4C	0.13824	0.22339	0.41688	0.0626*
H12	0.81606	0.04723	0.49317	0.0317*
H13	0.93518	0.05757	0.28528	0.0351*
H15	0.81356	0.19222	-0.23563	0.0315*
H16	0.69352	0.17762	-0.03236	0.0296*
H22	0.39678	0.18459	0.71588	0.0306*
H23	0.26141	0.17753	0.59856	0.0317*
H25	0.32756	0.05620	-0.00824	0.0316*
H26	0.46250	0.07040	0.10248	0.0328*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl4	0.0292 (2)	0.0657 (3)	0.0423 (2)	-0.0028 (2)	0.0115 (2)	0.0008 (2)
S4	0.0282 (2)	0.0334 (2)	0.0331 (2)	-0.0029 (2)	-0.0041 (1)	-0.0008 (2)
01	0.0310 (6)	0.0587 (7)	0.0249 (5)	0.0038 (5)	-0.0013 (4)	-0.0022 (4)
C1	0.0282 (8)	0.0263 (7)	0.0253 (7)	0.0026 (6)	0.0019 (5)	0.0014 (6)
C2	0.0268 (7)	0.0326 (7)	0.0235 (7)	-0.0006 (6)	0.0012 (5)	0.0019 (6)
C3	0.0275 (7)	0.0243 (7)	0.0218 (6)	-0.0005 (6)	0.0023 (5)	0.0002 (5)
C4	0.0252 (8)	0.0474 (9)	0.0526 (9)	0.0041 (7)	0.0014 (6)	-0.0073 (7)
C11	0.0247 (7)	0.0201 (6)	0.0225 (6)	-0.0015 (5)	-0.0011 (5)	-0.0026 (5)

supplementary materials

C12	0.0296 (7)	0.0263 (7)	0.0232 (6)	0.0014 (6)	-0.0024 (5)	0.0017 (5)
C13	0.0242 (7)	0.0339 (8)	0.0295 (7)	0.0033 (6)	-0.0031 (5)	-0.0013 (6)
C14	0.0244 (7)	0.0282 (7)	0.0282 (7)	-0.0042 (6)	0.0041 (5)	-0.0060 (6)
C15	0.0316 (8)	0.0267 (7)	0.0205 (6)	-0.0014 (6)	0.0008 (5)	0.0002 (5)
C16	0.0242 (7)	0.0262 (7)	0.0234 (7)	0.0018 (6)	-0.0023 (5)	-0.0020 (5)
C21	0.0243 (7)	0.0220 (7)	0.0235 (6)	0.0003 (5)	0.0043 (5)	0.0020 (5)
C22	0.0287 (7)	0.0274 (7)	0.0204 (6)	-0.0009 (6)	0.0011 (5)	-0.0008 (5)
C23	0.0260 (7)	0.0275 (7)	0.0260 (7)	0.0011 (6)	0.0060 (5)	-0.0016 (5)
C24	0.0267 (7)	0.0188 (6)	0.0236 (6)	-0.0023 (5)	-0.0002 (5)	0.0035 (5)
C25	0.0316 (8)	0.0271 (7)	0.0204 (6)	-0.0031 (6)	0.0016 (5)	-0.0015 (5)
C26	0.0300 (8)	0.0279 (7)	0.0245 (7)	0.0011 (6)	0.0085 (5)	-0.0009 (6)

Geometric parameters (Å, °)

Cl4—C14	1.7450 (13)	C23—C24	1.3986 (16)
S4—C4	1.7922 (17)	C24—C25	1.3930 (18)
S4—C24	1.7598 (13)	C25—C26	1.3726 (19)
01—C1	1.2230 (14)	C2—H2	0.9500
C1—C2	1.4822 (18)	С3—Н3	0.9500
C1—C21	1.4889 (18)	C4—H4A	0.9800
C2—C3	1.3244 (19)	C4—H4B	0.9800
C3—C11	1.4621 (18)	C4—H4C	0.9800
C11—C12	1.3950 (18)	C12—H12	0.9500
C11—C16	1.4004 (16)	C13—H13	0.9500
C12—C13	1.3814 (18)	C15—H15	0.9500
C13—C14	1.3728 (17)	C16—H16	0.9500
C14—C15	1.3841 (18)	C22—H22	0.9500
C15—C16	1.3822 (18)	С23—Н23	0.9500
C21—C22	1.3891 (18)	C25—H25	0.9500
C21—C26	1.4001 (17)	C26—H26	0.9500
C22—C23	1.3809 (19)		
C4—S4—C24	103.66 (7)	C1—C2—H2	120.00
O1—C1—C2	120.83 (12)	C3—C2—H2	120.00
O1-C1-C21	120.31 (11)	С2—С3—Н3	116.00
C2-C1-C21	118.85 (10)	С11—С3—Н3	116.00
C1—C2—C3	120.78 (11)	S4—C4—H4A	109.00
C2—C3—C11	127.63 (11)	S4—C4—H4B	109.00
C3—C11—C12	119.53 (11)	S4—C4—H4C	109.00
C3-C11-C16	122.62 (11)	H4A—C4—H4B	109.00
C12—C11—C16	117.71 (12)	H4A—C4—H4C	109.00
C11—C12—C13	121.86 (11)	H4B—C4—H4C	109.00
C12—C13—C14	118.74 (12)	C11—C12—H12	119.00
Cl4—C14—C13	119.65 (10)	C13—C12—H12	119.00
Cl4—C14—C15	118.82 (9)	C12—C13—H13	121.00
C13—C14—C15	121.53 (12)	C14—C13—H13	121.00
C14—C15—C16	119.17 (11)	C14—C15—H15	120.00
C11—C16—C15	120.98 (12)	C16—C15—H15	120.00
C1—C21—C22	119.31 (10)	C11—C16—H16	120.00
C1—C21—C26	122.37 (11)	C15—C16—H16	119.00

C22—C21—C26	118.31 (12)	C21—C22—H22	119.00
C21—C22—C23	121.62 (11)	С23—С22—Н22	119.00
C22—C23—C24	119.59 (11)	С22—С23—Н23	120.00
S4—C24—C23	124.46 (10)	С24—С23—Н23	120.00
S4—C24—C25	116.56 (9)	С24—С25—Н25	120.00
C23—C24—C25	118.98 (12)	С26—С25—Н25	120.00
C24—C25—C26	120.98 (11)	C21—C26—H26	120.00
C21—C26—C25	120.47 (12)	C25—C26—H26	120.00
C4—S4—C24—C23	2.51 (12)	C12-C13-C14-C15	-0.84 (19)
C4—S4—C24—C25	-177.35 (10)	C12-C13-C14-Cl4	179.71 (10)
O1—C1—C2—C3	21.2 (2)	Cl4—C14—C15—C16	179.25 (10)
O1—C1—C21—C26	-159.89 (12)	C13-C14-C15-C16	-0.20 (19)
C21—C1—C2—C3	-159.94 (12)	C14-C15-C16-C11	1.15 (18)
O1—C1—C21—C22	19.52 (18)	C1—C21—C26—C25	177.59 (12)
C2-C1-C21-C26	21.23 (18)	C22—C21—C26—C25	-1.83 (18)
C2-C1-C21-C22	-159.36 (11)	C1—C21—C22—C23	-179.31 (11)
C1—C2—C3—C11	-173.63 (12)	C26—C21—C22—C23	0.13 (18)
C2—C3—C11—C12	-173.92 (13)	C21—C22—C23—C24	1.01 (17)
C2—C3—C11—C16	10.4 (2)	C22—C23—C24—C25	-0.47 (17)
C16—C11—C12—C13	-0.07 (18)	C22—C23—C24—S4	179.67 (9)
C3—C11—C12—C13	-175.92 (12)	S4—C24—C25—C26	178.65 (10)
C12-C11-C16-C15	-1.01 (17)	C23—C24—C25—C26	-1.23 (18)
C3—C11—C16—C15	174.71 (12)	C24—C25—C26—C21	2.40 (19)
C11—C12—C13—C14	0.98 (19)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \mathbf{H} \cdots \!$
C15—H15····Cg ⁱ	0.95	2.81	3.527 (1)	133
C22—H22···Cg ⁱⁱ	0.95	2.94	3.550(1)	124
Symmetry codes: (i) x , $-y+1/2$, $z-1/2$; (ii) x , $-y+1/2$, z	z+1/2.			

Fig. 1

